TODO
Topcoder †
- codeprocessorで何故か必要な部分がカットされちゃう
- 変なことがあったら、一旦Removeしてもう一回設定しないと変更が反映されない
- Options -> Setup User Preferences -> Editors -> Default Language
問題の見方 †
- google翻訳に問題文を突っ込む
- 原始的順像
- 具体的な簡単な問題を自分の手で解こうと試みる。問題の概要を把握する。
- 明らかな条件を列挙し、覚えておく。自明な条件をコーナーケースとして把握する。
- その他、貪欲でいけるかなど、発想重視で色々考える。
- 求められる情報量の確認
- 特性関数の作りやすさ
- この答え(以上・以下)は問いの答えたりえるか?という質問に簡単に答えられるかを確認する。
- 計算量
- アルゴリズムに要求される計算量のキツさを確認する。
- 頑張って実装
- テスト
- 時間最大セットと、メモリ最大セットと、コーナーケースで通るかを確認する。
Challenge †
- vectorのチャレンジの仕方
hoge,foo,test
- とすると、vector[3]={hoge, foo, test};となる。
- 変なスペースはつけてはならない。
- 最後にカンマをつけてはならない。
虎本まとめ †
- 探索
- n次元の全探索
- グラフの幅優先、深さ優先の全探索
- しかし、格子状の道の最小ステップ経路の場合の数などでは、h*wの格子についての探索をすることになる→メモリを使ってメモ化することで余分な探索を省く
- 幅・深さ優先のメモ化可能性
- まず、指数関数計算量の探索方法を考えることが重要。その後、複数のルートから同じ計算を行なっていないか(グラフ上で合流する部分はないか)をチェックする。
- 返り値がある形でないとメモ化できない
- 「それ以降に得られる〜」をメモ化する
- メモ化からの漸化式構築=動的計画法
- 「これまでに得られる〜」をメモ化する
- 幅・深さ優先探索のメモ化のときに保存した状態と、ここで計算するテーブルの状態変数は一致する?
- 「ありえない組み合わせ」というものが存在する
- まず、丸の中に「添字」や「重さ」や「価値」を書いたグラフを書いてみる!すると、合流を見つけることができる。合流を見つけると、その上流すべての情報を集めれば、その添え字での値が確定することになる。
|